Edaravone Protected Human Brain Microvascular Endothelial Cells from Methylglyoxal-Induced Injury by Inhibiting AGEs/RAGE/Oxidative Stress

نویسندگان

  • Wenlu Li
  • Hongjiao Xu
  • Yangmin Hu
  • Ping He
  • Zhenzhen Ni
  • Huimin Xu
  • Zhongmiao Zhang
  • Haibin Dai
چکیده

Subjects with diabetes experience an increased risk of cerebrovascular disease and stroke compared with nondiabetic age-matched individuals. Increased formation of reactive physiological dicarbonyl compound methylglyoxal (MGO) seems to be implicated in the development of diabetic vascular complication due to its protein glycation and oxidative stress effect. Edaravone, a novel radical scavenger, has been reported to display the advantageous effects on ischemic stroke both in animals and clinical trials; however, little is known about whether edaravone has protective effects on diabetic cerebrovascular injury. Using cultured human brain microvascular endothelial cells (HBMEC), protective effects of edaravone on MGO and MGO enhancing oxygen-glucose deprivation (OGD) induced injury were investigated. Cell injury was measured by 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) formation, cell account, lactate dehydrogenase (LDH) release and Rhodamine 123 staining. Advanced glycation end-products (AGEs) formation and receptor for advanced glycation end-products (RAGE) expression were measured by western blotting. Cellular oxidative stress was measured by reactive oxygen species (ROS) release. Treatment of MGO for 24 h significantly induced HBMEC injury, which was inhibited by pretreatment of edaravone from 10-100 µmol/l. What's more, treatment of MGO enhanced AGEs accumulation, RAGE expression and ROS release in the cultured HBMEC, which were inhibited by 100 µmol/l edaravone. Finally, treatment of MGO for 24 h and then followed by 3 h OGD insult significantly enhanced cell injury when compared with OGD insult only, which was also protected by 100 µmol/l edaravone. Thus, edaravone protected HBMEC from MGO and MGO enhancing OGD-induced injury by inhibiting AGEs/RAGE/oxidative stress.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Tanshinone IIA protects against methylglyoxal-induced injury in human brain microvascular endothelial cells.

Tanshinone IIA is one of the major diterpenes from Salvia miltiorrhiza Bunge and has been shown to possess a protective effect on the endothelial cells. The present study aimed to investigate whether tanshinone IIA could protect against methylglyoxal (MGO)-induced injury in human brain microvascular endothelial cells (HBMEC). Using cultured HBMEC, cell viability was measured by MTT assay and tr...

متن کامل

Advanced glycation end products accelerate ischemia/reperfusion injury through receptor of advanced end product/nitrative thioredoxin inactivation in cardiac microvascular endothelial cells.

The advanced glycation end products (AGEs) are associated with increased cardiac endothelial injury. However, no causative link has been established between increased AGEs and enhanced endothelial injury after ischemia/reperfusion. More importantly, the molecular mechanisms by which AGEs may increase endothelial injury remain unknown. Adult rat cardiac microvascular endothelial cells (CMECs) we...

متن کامل

Edaravone Protects against Methylglyoxal-Induced Barrier Damage in Human Brain Endothelial Cells

BACKGROUND Elevated level of reactive carbonyl species, such as methylglyoxal, triggers carbonyl stress and activates a series of inflammatory responses leading to accelerated vascular damage. Edaravone is the active substance of a Japanese medicine, which aids neurological recovery following acute brain ischemia and subsequent cerebral infarction. Our aim was to test whether edaravone can exer...

متن کامل

Tetrahydroxy stilbene glucoside ameliorates H2O2-induced human brain microvascular endothelial cell dysfunction in vitro by inhibiting oxidative stress and inflammatory responses

Tetrahydroxy stilbene glucoside (TSG) is one of the main active ingredients of Polygonum multiflorum and performs various types of biological activity, particularly anti‑inflammatory and anti‑oxidative activities. However, the beneficial effect of TSG in H2O2‑induced human brain microvascular endothelial cell (HBMEC) dysfunction has not been fully elucidated. In the present study, H2O2‑induced ...

متن کامل

Salvianolic Acid A Protects Against Diabetic Nephropathy through Ameliorating Glomerular Endothelial Dysfunction via Inhibiting AGE-RAGE Signaling.

BACKGROUND/AIMS Glomerular endothelium dysfunction leads to the progression of renal architectonic and functional abnormalities in early-stage diabetic nephropathy (DN). Advanced glycation end products (AGEs) and receptor for AGEs (RAGE) are proved to play important roles in diabetic nephropathy. This study investigated the role of Salvianolic acid A (SalA) on early-stage DN and its possible un...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2013